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What do | do !
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91 Scientists/106 Technicians & Engineers/35 PhD St.: 235 persons, 13 teams




Interested In deep learning

Machine Learning

& iy — 35—l

Input Feature extraction Classification Output

Deep Learning

o — 3377 -

Input Feature extraction + Classification Output

=> Specially adapted to plant imaging (large cohorts, selfocclusion,
few ethical issues, multiscale, ...)
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Spectral imaging

Open choice
Gray 1 (visible /
NIR)
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Color 3 (RV B) or on
demand

Open choice
Multispectral 2-10 (visible /
NIR)

Tens to

Hyperspectral hundreds




Spectral imaging + machine learning

Cost
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Guide line of the talk: 3 use cases

Spectre d'un pixel

Building cost-effective spectral imaging with
Statistical learning

Benoit, Landry, Romain Benoit, Etienne Belin, Rodolphe Vadaine, Didier
Demilly, Frangois Chapeau-Blondeau, and David Rousseau. "On the
value of the Kullback—Leibler divergence for cost-effective spectral
imaging of plants by optimal selection of wavebands." Machine Vision
and Applications 27, no. 5 (2016): 625-635.

Low-cost spectro-imaging & compressed learning

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Germain, G., Tougne,
L., & Rousseau, D. (2021). CTIS-Net: A Neural Network Architecture
for Compressed Learning Based on Computed Tomography Imaging
Spectrometers. IEEE Transactions on Computational Imaging, 7,
572-583.

Lowering the cost of annotation in machine learning

Douarre, Clément, Carlos F. Crispim-Junior, Anthony Gelibert, Laure
Tougne, and David Rousseau. "Novel data augmentation strategies to
boost supervised segmentation of plant disease." Computers and
Electronics in Agriculture 165 (2019): 104967.




Cost effective spectral imaging

Cost

Open choice
1 (visible /
NIR)

Imposed
Color 3 (RV B) or on
demand

Open choice
Multispectral 2-10 (visible /
NIR)

Tens to
\ 4 Hyperspectral hundreds




Selecting wavebands with Shannon

Input X a spectrum Output Y : M values at i

’’’’’’’’

between lambda min output as the integrated

and lambda ma of each spectral band

ooooo

fi spectral response of each band ; S(lambda) input spectrum

)\max
P(Y =i)= / fi(A\)S(\)d\  Probability to find a photon in spectral band i
Ami M

PisM =Y £ €1 Post() =1 - Paar(A) =1 Zl fi()
= =
P(Y =0)= /A mu P« (A)S(A)dA  Probability to have a photon lost
I(X;Y)=H(Y) - H(Y|X)
H(Y) = ZP(Y —i)log[P(Y =i)] H(Y|X) = [\ s H(Y|X = A)S(\)dA

=0
.H(YIX = )\) sz 10g[fz‘ /\)]_I)lost )\) log[}jlost /\)]I

Best fi the ones WhICh maximize 1(X:Y). We test gaussian function typical of LED

10



AENES
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PLS : partial least square; CDA : Canonical Discriminant analysis

PLS, CDA : filter difficutt to-implerment physically white Gaussian fitter accessibte

with LED or Dichroic standard filters



Pics @AP INRAZ  GLIW2;

L ow-cost spectro-imaging &
compressed learning

David Rousseau




Cost effective spectral imaging

Cost

Open choice

Gray 1 (visible /
NIR)
Imposed
Color 3 (RV B) or on
demand

Open choice
Multispectral 2-10 (visible /
NIR)

Tens to
\ 4 Hyperspectral hundreds




Cost effective spectral imaging

Open choice
Gray 1 (visible /
NIR)

Imposed
Color 3 (RV B) or on
demand

Open choice
Multispectral 2-10 (visible /
NIR)

Tens to

Hyperspectral hundreds




Going (snapshot) hyperspectral

Computed Tomography Imaging Spectrometer 1 (based on a diffraction
grating)

Objective

|ens - Detector

array

Kinoform
grating
(disperser)

1. Descour et al . "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results.” Applied Optics
(1995)
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Going (snapshot) hyperspectral

Computed Tomography Imaging Spectrometer 1 (based on a diffraction
grating)

1. Descour et al . "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results.” Applied Optics
(1995)



Compare full-resolution visible image and CTIS

Neural
network
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Goal : compare full-resolution visible image and CTIS

Neural
network

> — Decision

In which cases is this spatio-
spectral imagery useful for a
neural network compared to a

full-resolution visible- spectrum
Image?




Case study : Apple scab

» Apple scab is a very serious
disease
afflicting apple trees. 2

2. Bowen et al. "Venturia inaequalis: the causal agent of apple scab.” Molecular Plant Pathology (2011)



Case study : Apple scab

» Apple scab is a very serious
disease
afflicting apple trees. 2

* Visual symptoms : dark spots on
the leaves.

2. Bowen et al. "Venturia inaequalis: the causal agent of apple scab.” Molecular Plant Pathology (2011)



Case study : Apple scab

» Apple scab is a very serious
disease

afflicting apple trees. 2

* Visual symptoms : dark spots on
the leaves.

 We developed a scab simulator
to generate a “scabbed
leaves” annotated dataset.

2. Bowen et al. "Venturia inaequalis: the causal agent of apple scab.” Molecular Plant Pathology (2011)



Simulating RGB images

Healthy leaf
from LeafSnap
dataset 3

3. Kumar et al. "Leafsnap: A computer vision system for automatic plant species identification." ECCV, 2012.



Simulating RGB images

Healthy leaf Scab lesion positions on
from LeafSnap leaf 4

dataset 3

3. Kumar et al. "Leafsnap: A computer vision system forautomatic plant species identification." ECCV, 2012.

4. Douarre et al. "Novel data augmentation strategies to boost supervised segmentation of plant disease images”, Computers and
Electronics in Agriculture [under review]



Simulating RGB images

Healthy leaf Small dataset of
from LeafSnap Scabbed real scabbed
dataset3 leaf leaves

3. Kumar et al. "Leafsnap: A computer vision system forautomatic plant species identification." ECCV, 2012.

4. Douarre et al. "Novel data augmentation strategies to boost supervised segmentation of plant disease images”, Computers and
Electronics in Agriculture [under review]



Simulating CTIS images : scab contrast

Hyperspectral acquisition of a leaf afflicted
with scab
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Hyperspectral acquisition of a leaf afflicted
with scab

Acquisition in LARIS (Angers) with
spectral-scanning camera (400-1000nm),
160 bands
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Simulating CTIS images : scab contrast
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Simulating CTIS images : scab contrast

Hyperspectral acquisition of a leaf afflicted
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Simulating CTIS images : scab contrast

Hyperspectral acquisition of a leaf afflicted
with scab
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Acquisition in LARIS (Angers) with
spectral-scanning camera (400-1000nm),
160 bands



Simulating CTIS images : imaging system

CTIS model CTIS output
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Simulating CTIS Images : imaging system

CTIS model CTIS output




Datasets

3000 simulated full-size RGB images
separated in train/validation/test sets.




Datasets

3000 simulated full-size RGB images + 3000 simulated CTIS images
separated in train/validation/test separated in
sets. the same way.




Scab contrast variation

e Scab infection progress — stronger contrast between scab and
non scab.
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Generation of datasets with varying contrast, to simulate various infection
degrees.
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Scab contrast variation

» Scab infection progress — stronger contrast between scab and non scab.

» Generation of datasets with varying contrast, to simulate various infection
degrees.
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Scab contrast variation

» Scab infection progress — stronger contrast between scab and non scab.

» Generation of datasets with varying contrast, to simulate various infection
degrees.
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Scab contrast variation

« Scab infection progress — stronger contrast bet

» Generation of datasets with varying contrast, to
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Training specifics

» Classification problem between scab and healthy
(50/50).
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Training specifics

o Classification problem between scab and healthy (50/50).
» Metric is Matthews Correlation Coefficient (MCC).

« Trained on a reduced VGG network >, pre-trained on ImageNet, with
standard data augmentation.

“This is a healthy
. > leaf /

This is a scabbed
leaf. ”’

5. Simonyan et al. "Very deep convolutional networks for large-scale image recognition." arXiv preprint (2014)



CTIS vs Full resolution spatial

Comparison of CTIS vs Spatial for different scab contrasts
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Comparison of CTIS vs Spatial for different scab contrasts
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CTIS vs Full resolution spatial

Comparison of CTIS vs Spatial for different scab contrasts
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VWhere is the network looking ?

—_— “Thisis a
cat.”

Where did the network — Grad-Cam visualization
look ? algorithm >

5. Selvaraju et al. Grad-cam : Visual explanations from deep networks via gradient-based localization. ICCV (2017)



VWhere is the network looking ?

CTIS for different scab contrasts
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CTIS for different scab contrasts
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Where Is the network looking ?

CTIS for different scab contrasts

0.0 0.2 0.4 0.6 0.8
Contrast compared to complete scab infection
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Deep learning era

Machine Learning

& & 737 [l

Input Feature extraction Classification Output

Deep Learning

& — 22—

Input Feature extraction + Classification Output

47



When is deep learning better than classical ML!

@
O
=
T
£
O
=
@
a

Amount of data

How do data scence techniques scale with amount of data?

Where does this crossing occurs? => 104

68



Fconomical consequences

ML 2000
6 months 6 months
Research Develop and deploy
ML 2016 weeks day
Deep Scripting environment
Learning for MSc/PhD level

researchers

————————————————————————————————————————————————————————

Keras Point-n-click for any

Im-Joy application engineer

——————————
- -

--------------------------------------------------------

69



Hidden costs In supervised machine learning

Image annotation

Specific computing systems

| -.' -‘ E

‘ This image by GBPublic_PR is
S licensed under CC-BY 2.0

70



How to speed up annotation !

Supervised Machine learning based: lllastic, Weka, Survos, Labelkit, ...
Active learning : Peter, Loic, et al. "Assisting the examination of large
histopathological slides with adaptive forests." Medical image analysis 35
(2017)

Annotate with other colleagues: Cytomine

Annotate with citizen science : Giuffrida MV, Chen F, Scharr H, Tsaftaris
SA. Citizen crowds and experts: observer variability in image-based plant
phenotyping. Plant methods. 2018 Dec;14(1):12.

Pay people to do it for you: Amazon mechanical turk

amazon
~—

mechanical turk

cyt®omine N



How to speed up annotation !

B Supervised Machine learning based: lllastic, Weka, Survos, Labelkit, ...

®  Active learning : Peter, Loic, et al. "Assisting the examination of large
histopathological slides with adaptive forests." Medical image analysis 35
(2017)

®  Annotate with other colleagues: Cytomine

®  Annotate with citizen science : Giuffrida MV, Chen F, Scharr H, Tsaftaris
SA. Citizen crowds and experts: observer variability in image-based plant
phenotyping. Plant methods. 2018 Dec;14(1):12.

® Pay people to do it for you: Amazon mechanical turk

® [ earn on synthetic data automatically annotated

amazZon

v‘7

mechanical turk

cyt®omine -
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Data augmentation techniques

1 Horlzontal fllps

3. Color jitter

' WhYl 1
. f"" ""
”W

2. Random crops/scales

https://keras.io/preprocessing/image/
https.//github.com/al bu/al bumentations
https.//imgaug.readthedocs.io/en/l atest/

https://github.com/ mdbloice/A ugmentor

74


https://keras.io/preprocessing/image/
https://github.com/albu/albumentations
https://imgaug.readthedocs.io/en/latest/
https://github.com/mdbloice/Augmentor

Data augmentation techniques

Any physical parameter you want your algorithm to
be insensitive to :

- rotation

- Scaling

- Shearing

- Illumination

- lens distortions, ...

This Is adding invariance, |l.e. robustness to the
model, via the data

75
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How to simulate images?

® Needs synthetic models of living objects

® Needs physical imaging models for image simulator

Object Experimental Real
Parameters Conditions Images
Object
Sitm;.'lator > S.Imalg: » Validation >
Simulated muiator Simulated Output
Objects Images

Benoit L, Rousseau D, et al Simulation of image acquisition in machine vision dedicated to seedling elongation to
validate image processing root segmentation algorithms. Computers and electronics in agriculture. 2014 Jun 1;104:84-92.

77



Some evidence of success In computer vision

Computer Graphics has great models for generating body shapes and poses

[Loper et al., "SMPL: A Skinned Multi-Person Linear Model", SIGGRAPH Asia, 2015]

Tribute C. Lampert



Synthetic depth images

Possible to create unlimited amount of training data

Shotton et al., "Real-Time Human Pose Recognition in Parts from Single Depth Images”, CVPR 2011]

https://www.blensor.org/tag/lidar.html

Tribute C. Lampert


https://www.blensor.org/tag/lidar.html

Application to train classifiers

® Human pose estimation

Depth images Test onReal
}‘o w" ‘;K»‘ ¢ Classifier »
J4) 3R VPRt PN o for Windows
‘ A! » ‘ — M . —
4/1 g’ ’ « @ “ é > . >
$ 2 2 e @ B, e —

Train on synthetic TR

[Richter et al., "Playing for Data: Ground Truth from Computer Games", ECCV 2016] Tribute C. Lampert 80
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Compensation of discrepancy
between real and simulated

David Rousseau




When simulated data fail?

® |t is simple, when simulated data do not match the real data
® We saw the failures:
0 Pose estimation: the synthetic data simulate well reality
but
0 Denoising: synthetically added noise is not representative of the real
(sensor/process) noise

® |n mathematical terms... the distributions must overlap

real simulated real simulated

82



Transfer Learning

o0 000 OOGOOSBOOONEODS
® =]
] v

indice

Transfer Learning Overview

=1 b
S

A Images

‘n—-

B Images
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Getting more data
with generative models
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Generative models

Task: generate new samples following the same
probabillistic distribution of a given training dataset

e 'y
g ¥,
.OO. : oo “. :. 'l> .00. : e, ... ..
3 ..o‘. :‘.} g o ; p(X):? 3 ..0‘. :‘? "

L]
3°® e .-..: ot .:9, .',.:

[ ]
TR0 S

712170l 918|713]2
BERSE ENCIEI
SN B ERrEE
GONECIE 2[o[3]2]0

Note: sometimes it’s fine if we cannot estimate the explicit form of p(x),
since it might be over complicated Tribute S. Wang 85




A parenthesis: sampling from a difficult distribution

Sample an easy one and transform it

Examples:
= Box-Muller transform: uniform = Normal

Uy, Uy ~ uniform([O_l]) — U=\ —2 log 1y cos(2mus) ~ N(0. 1)

“ Normal = Gaussian

u ~ uniform([0,1])

86



encoders (VAE)
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Q 2
—l o
X 9

x

+ +

How do we learn the

parameters?

Reconstruction

Code z

Input Image x
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Computation graph
Credit: Doersch

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

Tribute S. Wang



Generative adversarial Network (GAN)

Fake (0)
Code z Generated Image
g Real (1)
Train G to make it 0.5 not sure

impossible for D to
make good
predictions

Train D to have
high values on real
data and low ones

Training Image on output of G

Tribute S. Wang 88



Generative adversarial Network (GAN)

Discriminator tries the best to
distinguish whether the image is
generated by computers or not

An invigible *100", can
' Mini characters: tiny only be seen when
“RMB” and "RMB wiewed at 180 degrees
100° prinked agalnst the Kght,
repaatedly

FR11010951

L. =
i R A 727 15 31 e
' | Lk =0 5]
- 1_5‘ - | -
sanore e e i
i\ {
fi [ T : N s - iy
. NSRS CSPRERT e A
Yin and Yang: the Mao’s visage, the bradle, and
— two patterns form a name of the bank have an
""'W' (4 complete image of uneven feel when rubbed
c‘ an anclent coin

100 A o =

Generator tries the best to cheat
the discriminator by generating
more realistic images

TributeS. Wang



Conclusion on generative models

“ VAEs:
O Easier to train
O Blurry result due to minimizing the MSE based reconstruction
error
O Nice probabilistic formulation, easy to introduce prior

“ GANSs:
0 High-quality visually appealing result
O Difficult to train (mode collapse, training schedule)
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Getting more data... full monty
a comparative use case
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Apple scab segmentation

Difficult with human eye (RGB)

Much easier with IR

Flgure 15 : Classes phénotyplgues de pommlers Infectés par le champignon responsable de la tavelure
Venturia inaequalis selon Chevaller et al. (1991)
classe 0 : aucun symptdme visible ; classe 1 : symptomes caractéristiques de « pin-point » ; classe 2 :
symptdmes de résistance (chlorose, nécrose, crispation) sans sporulation ; classe 3a : symptémes de
résistance avec quelques taches de sporulation peu abondante ; classe 3b : symptémes de résistance
avec tdches de sporulation abondante ; classe 4 : pas de symptéme de résistance et sporulation
abondante

0% 1% 5% 10% 25% 50% 75%

S
0 1 2 3 - 5 6 7

RGB IR

Figure 16 : Adaptation de I'échelle de sévérité de sporulation de Croxall et al. (1952)

0 : aucune sporulation visible ; 1% de surface foliaire couvert de sporulation : 1 ; de 145% :2;de5a -

10% :3;de10a25% :4;de25a50% :5;de50a75%:6;de75a100% :7 C Douarre et al COMPAG




The Full Monty

= Several data simulators Real training set

7]
» Data augmentation Ground-truth generator GAN*

Handcrafted simulator

‘ ' : Generated scabbed leaf

8 @
|

Simulated set

By

Simulated set

Real test set

[4] Generative adversarial nets, Goodfellow et. al., 2014 —

C. Douarre et al COMPAG
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Data augmentation ... the full Monty

Performance

Performance gain

Amount of data

Annotated data Annotated data
+ augmented data

Different approaches: Standard data augmentation, simulation and Generative
adversarial network

Which one is the best? : in our case the simulator and data augmentation, nothing to
be expected from GAN
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When spectral imaging meets machine learning

Spectre d'un pixel

Building cost-effective spectral imaging with
Statistical learning

Benoit, Landry, Romain Benoit, Etienne Belin, Rodolphe Vadaine, Didier
Demilly, Frangois Chapeau-Blondeau, and David Rousseau. "On the
value of the Kullback—Leibler divergence for cost-effective spectral
imaging of plants by optimal selection of wavebands." Machine Vision
and Applications 27, no. 5 (2016): 625-635.

Low-cost spectro-imaging & compressed learning

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Germain, G., Tougne,
L., & Rousseau, D. (2021). CTIS-Net: A Neural Network Architecture
for Compressed Learning Based on Computed Tomography Imaging
Spectrometers. IEEE Transactions on Computational Imaging, 7,
572-583.

Lowering the cost of annotation in machine learning

Douarre, Clément, Carlos F. Crispim-Junior, Anthony Gelibert, Laure
Tougne, and David Rousseau. "Novel data augmentation strategies to
boost supervised segmentation of plant disease." Computers and
Electronics in Agriculture 165 (2019): 104967.
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