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Who am I ?…. data scientist like all of us
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David Rousseau



What do I do ?
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Ornamentals Fruits & Vegetables Seeds

Quality and Health of horticultural 
crops

Resistance 
sustainability Metagenomics 

Disease emergence

Architecture and 
flowering

Evolutionary ecology 
of pathogens

Quality & conservation Conservation 
& seed 
quality

Pathogens

EpigeneticsBioinformatics
HT Phenotyping

Genetic diversity & Breeding Biotic/abiotic 
stresses and 
germination

Urban Agronomy

91 Scientists/106 Technicians & Engineers/35 PhD St.: 235 persons, 13 teams



Interested in deep learning

4

=> Specially adapted to plant imaging (large cohorts, selfocclusion, 
few ethical issues, multiscale, …)



Both in research and teaching

Next SESSION JUNE 2023



Spectral imaging
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Type of 
sensors

Nb 
Channel Filtrers Imaging systems

Gray 1
Open choice 

(visible / 
NIR)

Color 3 
Imposed 

(R V B) or on 
demand

Multispectral 2 - 10
Open choice 

(visible / 
NIR)

Hyperspectral Tens to 
hundreds



Spectral imaging + machine learning
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Cost
Type of 
sensors

Nb 
Channel Filtrers Imaging systems

Gray 1
Open choice 

(visible / 
NIR)

Color 3 
Imposed 

(R V B) or on 
demand

Multispectral 2 - 10
Open choice 

(visible / 
NIR)

Hyperspectral Tens to 
hundreds



Guide line of the talk: 3 use cases

Douarre, Clément, Carlos F. Crispim-Junior, Anthony Gelibert, Laure 
Tougne, and David Rousseau. "Novel data augmentation strategies to 
boost supervised segmentation of plant disease." Computers and 
Electronics in Agriculture 165 (2019): 104967.

Benoit, Landry, Romain Benoit, Étienne Belin, Rodolphe Vadaine, Didier 
Demilly, François Chapeau-Blondeau, and David Rousseau. "On the 
value of the Kullback–Leibler divergence for cost-effective spectral 
imaging of plants by optimal selection of wavebands." Machine Vision 
and Applications 27, no. 5 (2016): 625-635.
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Low-cost spectro-imaging & compressed learning

Building cost-effective spectral imaging with 
Statistical learning

Lowering the cost of annotation in machine learning

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Germain, G., Tougne, 
L., & Rousseau, D. (2021). CTIS-Net: A Neural Network Architecture 
for Compressed Learning Based on Computed Tomography Imaging 
Spectrometers. IEEE Transactions on Computational Imaging, 7, 
572-583.



Cost effective spectral imaging
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Cost
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Nb 
Channel Filtrers Imaging systems

Gray 1
Open choice 

(visible / 
NIR)

Color 3 
Imposed 

(R V B) or on 
demand

Multispectral 2 - 10
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(visible / 
NIR)

Hyperspectral Tens to 
hundreds



Selecting wavebands with Shannon
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fi spectral response of each band ;  S(lambda) input spectrum

Probability to find a photon in spectral band i

Probability to have a photon lost

Selection

Output  Y : M values at the 
output as the integrated content 
of each spectral band

Input  X a spectrum 
between lambda min  
and lambda max

Best fi the ones which maximize I(X;Y). We test gaussian function typical of LED



Results
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Filter coefficient
Mutual information 

Optimized Gaussian filter

PLS : partial least square; CDA : Canonical Discriminant analysis
PLS, CDA : filter difficult to implement physically while  Gaussian filter accessible 
with LED or Dichroïc standard filters



David Rousseau

Low-cost spectro-imaging & 
compressed learning
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Going (snapshot) hyperspectral

Computed Tomography Imaging Spectrometer 1 (based on a diffraction 
grating)

1. Descour et al . "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results." Applied Optics 
(1995)
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Going (snapshot) hyperspectral

Computed Tomography Imaging Spectrometer 1 (based on a diffraction 
grating)

1. Descour et al . "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results." Applied Optics 
(1995)



Neural  
network

Compare full-resolution visible image and CTIS
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Goal : compare full-resolution visible image and CTIS

Neural  
network

In which cases is this spatio-
spectral  imagery useful for a 
neural network  compared to a 

full-resolution visible-  spectrum 
image?

Decision
?

?



Case study : Apple scab

• Apple scab is a very serious 
disease 
afflicting apple trees. 2

2. Bowen et al. "Venturia inaequalis: the causal agent of apple scab." Molecular Plant Pathology (2011)
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• Apple scab is a very serious 
disease 
afflicting apple trees. 2 

• Visual symptoms : dark spots on 
the  leaves.
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Case study : Apple scab

• Apple scab is a very serious 
disease 
afflicting apple trees. 2 

• Visual symptoms : dark spots on 
the  leaves. 

• We developed a scab simulator 
to  generate a “scabbed 
leaves”  annotated dataset.

2. Bowen et al. "Venturia inaequalis: the causal agent of apple scab." Molecular Plant Pathology (2011)



Simulating RGB images

Healthy leaf 
from LeafSnap 

dataset 3

3. Kumar et al. "Leafsnap: A computer vision system for automatic plant species identification." ECCV, 2012.



Simulating RGB images

Healthy leaf 
from LeafSnap 

dataset 3

Scab lesion positions on 
leaf 4

3. Kumar et al. "Leafsnap: A computer vision system for automatic plant species identification." ECCV, 2012. 
4. Douarre et al. "Novel data augmentation strategies to boost supervised segmentation of plant disease images”, Computers and 
Electronics in Agriculture [under review]



Simulating RGB images

Healthy leaf 
from LeafSnap 

dataset3

Small dataset of 
real  scabbed 
leaves

Scabbed 
leaf

3. Kumar et al. "Leafsnap: A computer vision system for automatic plant species identification." ECCV, 2012. 
4. Douarre et al. "Novel data augmentation strategies to boost supervised segmentation of plant disease images”, Computers and 
Electronics in Agriculture [under review]



Simulating CTIS images : scab contrast

Hyperspectral acquisition of a leaf afflicted 
with scab
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spectral-scanning camera (400-1000nm),  
160 bands
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Simulating CTIS images : imaging system

CTIS model CTIS output
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Simulating CTIS images : imaging system

CTIS model CTIS output



Datasets

3000 simulated full-size RGB images 
separated in train/validation/test sets.



Datasets

3000 simulated CTIS images 
separated in 
the same way.

3000 simulated full-size RGB images 
separated in train/validation/test 
sets.

+



Scab contrast variation

• Scab infection progress → stronger contrast between scab and 
non scab.
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Training specifics
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(50/50).
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Training specifics

• Classification problem between scab and healthy (50/50). 

• Metric is Matthews Correlation Coefficient (MCC). 

• Trained on a reduced VGG network 5, pre-trained on ImageNet, with 
standard data augmentation.

“This is a healthy 
leaf / 
This is a scabbed 
leaf. ”

5. Simonyan et al. "Very deep convolutional networks for large-scale image recognition." arXiv preprint (2014)



CTIS vs Full resolution spatial



CTIS vs Full resolution spatial
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CTIS vs Full resolution spatial



Where is the network looking ?



Where is the network looking ?

“This is a 
cat.”



Where is the network looking ?

Where did the network 
look ?

“This is a 
cat.”



Where is the network looking ?

Where did the network 
look ?

“This is a 
cat.”

→ Grad-Cam visualization 
algorithm 5

5. Selvaraju et al. Grad-cam : Visual explanations from deep networks via gradient-based localization. ICCV (2017)
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Where is the network looking ?



David Rousseau

Lowering the cost of supervised 
machine learning 



Deep learning era

6747



When is deep learning better than classical ML?

68

Where does this crossing occurs? => 10^4



Economical consequences 

69

Deep
Learning

Keras
Im-Joy



Hidden costs in supervised machine learning

70

Specific computing systems
Image annotation



How to speed up annotation ?

Supervised Machine learning based: Illastic, Weka, Survos, Labelkit, … 

Active learning :  Peter, Loïc, et al. "Assisting the examination of large 
histopathological slides with adaptive forests." Medical image analysis 35 
(2017) 

Annotate with other colleagues: Cytomine 

Annotate with citizen science :  Giuffrida MV, Chen F, Scharr H, Tsaftaris 
SA. Citizen crowds and experts: observer variability in image-based plant 
phenotyping. Plant methods. 2018 Dec;14(1):12. 

Pay people to do it for you:  Amazon mechanical turk

…

71



How to speed up annotation ?

Supervised Machine learning based: Illastic, Weka, Survos, Labelkit, … 

Active learning :  Peter, Loïc, et al. "Assisting the examination of large 
histopathological slides with adaptive forests." Medical image analysis 35 
(2017) 

Annotate with other colleagues: Cytomine 

Annotate with citizen science :  Giuffrida MV, Chen F, Scharr H, Tsaftaris 
SA. Citizen crowds and experts: observer variability in image-based plant 
phenotyping. Plant methods. 2018 Dec;14(1):12. 

Pay people to do it for you:  Amazon mechanical turk 

Learn on synthetic data automatically annotated

72



David Rousseau

Getting more data with data 
augmentation 
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Data augmentation techniques
2. Random crops/scales1. Horizontal flips

3. Color jitter

https://keras.io/preprocessing/image/
https://github.com/albu/albumentations
https://imgaug.readthedocs.io/en/latest/
https://github.com/mdbloice/Augmentor

https://keras.io/preprocessing/image/
https://github.com/albu/albumentations
https://imgaug.readthedocs.io/en/latest/
https://github.com/mdbloice/Augmentor
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Data augmentation techniques

Any physical parameter you want your algorithm to 
be insensitive to :  

- rotation 
- Scaling  
- Shearing 
- illumination   
- lens distortions, …  

This is adding invariance, I.e. robustness to the 
model, via the data



David Rousseau

Getting more data with simulation 



How to simulate images?
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Needs synthetic models of living objects 

Needs physical imaging models for image simulator

Benoit L, Rousseau D,  et al Simulation of image acquisition in machine vision dedicated to seedling elongation to  
validate image processing root segmentation algorithms. Computers and electronics in agriculture. 2014 Jun 1;104:84-92.



Some evidence of success in computer vision

Computer Graphics has great models for generating body shapes and poses  
[Loper et al., "SMPL: A Skinned Multi-Person Linear Model", SIGGRAPH Asia, 2015] 

78Tribute C. Lampert



Synthetic depth images 
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Possible to create unlimited amount of training data 
Shotton et al., "Real-Time Human Pose Recognition in Parts from Single Depth Images", CVPR 2011]  

 

Tribute C. Lampert

https://www.blensor.org/tag/lidar.html

https://www.blensor.org/tag/lidar.html


Application to train classifiers 
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Semantic segmentation of real scene

Train on synthetic

Test onReal

Human pose estimation

[Richter et al., "Playing for Data: Ground Truth from Computer Games", ECCV 2016] Tribute C. Lampert



David Rousseau

Compensation of discrepancy 
between real and simulated



When simulated data fail?

82

It is simple, when simulated data do not match the real data 
We saw the failures: 
o Pose estimation: the synthetic data simulate well reality 
    but 
o Denoising: synthetically added noise is not representative of the real 

(sensor/process) noise 

In mathematical terms… the distributions must overlap

real                       simulated real                       simulated



Transfer Learning

83



David Rousseau

Getting more data 
with generative models



Generative models 
Task: generate new samples following the same 
probabilistic distribution of a given training dataset

Training samples Generated samples

Note: sometimes it’s fine if we cannot estimate the explicit form of p(x),  
since it might be over complicated Tribute S. Wang 

p(x)=?

85



A parenthesis: sampling from a difficult distribution

                Sample an easy one and transform it 

Examples: 
Box-Muller transform: uniform ➔ Normal 

Normal ➔ Gaussian 

General 1D distribution P with cdf Φ

86



Variational auto-encoders (VAE) 
How do we learn the  
parameters?

Input Image x Code z Reconstruction

Reconstruction Loss

Decoder 
network 
f()

KL-Divergence

Computation graph 
Credit: Doersch

Tribute S. Wang 87



Generative adversarial Network (GAN) 

Generator 
G

Discriminator 
D

Netwo
rk

Fake (0)
Code z Generated Image

Real (1)

Training Image

Tribute S. Wang 

0.5 not sure

Train D to have 
high values on real 
data and low ones 
on output of G

Train G to make it 
impossible for D to 
make good 
predictions

88



Generative adversarial Network (GAN) 
Discriminator tries the best to 
distinguish whether the image is 
generated by computers or not

Generator tries the best to cheat 
the discriminator by generating 
more realistic images

TributeS. Wang 



Conclusion on generative models

VAEs:  
o Easier to train  
o Blurry result due to minimizing the MSE based reconstruction 

error  
o Nice probabilistic formulation, easy to introduce prior 

GANs:  
o High-quality visually appealing result  
o Difficult to train (mode collapse, training schedule)



David Rousseau

Getting more data… full monty 
a comparative use case



Apple scab segmentation

Difficult with human  eye (RGB)

Much easier with IR

C. Douarre et al COMPAG



The Full Monty

C. Douarre et al COMPAG



Results

Helper data 
set

From scratch Transfer 
learning

None 0,405 0,462

Data 
augmentation

0,498 0,517

Model-based 
simulator

0,391 0,547

GAN-based  
simulator

0,450 0,451

C. Douarre et al COMPAG
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Data augmentation … the full Monty

Annotated data

Performance

Amount of data

Performance gain

Annotated data 
+ augmented data

Different approaches: Standard data augmentation, simulation and Generative 
adversarial network

Which one is the best? :  in our case the simulator and data augmentation, nothing to 
be expected from GAN

C. Douarre et al COMPAG



When spectral imaging meets machine learning

Douarre, Clément, Carlos F. Crispim-Junior, Anthony Gelibert, Laure 
Tougne, and David Rousseau. "Novel data augmentation strategies to 
boost supervised segmentation of plant disease." Computers and 
Electronics in Agriculture 165 (2019): 104967.

Benoit, Landry, Romain Benoit, Étienne Belin, Rodolphe Vadaine, Didier 
Demilly, François Chapeau-Blondeau, and David Rousseau. "On the 
value of the Kullback–Leibler divergence for cost-effective spectral 
imaging of plants by optimal selection of wavebands." Machine Vision 
and Applications 27, no. 5 (2016): 625-635.

Low-cost spectro-imaging & compressed learning

Building cost-effective spectral imaging with 
Statistical learning

Lowering the cost of annotation in machine learning

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Germain, G., Tougne, 
L., & Rousseau, D. (2021). CTIS-Net: A Neural Network Architecture 
for Compressed Learning Based on Computed Tomography Imaging 
Spectrometers. IEEE Transactions on Computational Imaging, 7, 
572-583.
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Thanks for your 
deep human attention 
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