Optimizing multi-coloured LEDs for identifying pigments based on Self Organizing Map and Principle Component Analysis

Pichayada Katemake
Department of Imaging and Printing technology
Faculty of Science
Chulalongkorn University

OUTLINE

01 Self-Organizing Map (SOM)
02 Identification of pigments using technical photography/multimodal imaging/multispectrum imaging

03
Building pigment database using narrow band LEDs and show flowchart of pigments

04 Applying flowchart method /Self organizing map
05 Results of PCA

01

Self-Organizing Map (SOM) and their applications

Self-Organizing Map (SOM)

Standard SOM is categorized as an unsupervised learning algorithm that is designed to find the topological structure embedded within a multidimensional data space.

SOM consists of two major modules: the input space and the lateral lattice space.

It can do data visualization and clustering.

An approach based on digital image analysis to estimate the live weights of pigs in farm environments
Apirachai Wongsriworaphon ${ }^{2}$. Banchar Arnonkijpanich ${ }^{\text {b/ }}$. Supachai Pathumnakul ${ }^{\text {an }}$

VQTAM was used for estimating system. It is improved by autoregressive model (AR) and locally linear embedding (LLE).

Supervised learning based on the self-organizing maps for forward kinematic modeling of Stewart platform

Saithip Limtrakul ${ }^{1}$ - Banchar Arnonkijpanich ${ }^{1,2}$ ©
VQTAM based on SOM was used for solving a forward kinetic problem of parallel manipulator. It is improved by autoregressive model (AR) and
locally linear embedding (LLE).

Contemst lista available at Sciencenirect

Computers and Electronics in Agriculture
|ournal homepage: www.elsevier.com/locate/compag

\square Croment

02

Identification of pigments using technical photography/multimodal imaging/multi-spectrum imaging

Technical Photography

Identification of pigments by multispectral
 imaging; a flowchart method

	Activated colored material by	filter
VIS (visible reflected)	visible light	visible to sensor
IR (IR reflected)	visible to IR	IR to sensor
IRF (visible-induced infrared luminescence)	visible light	IR to sensor
UVF (UVA induced visible luminescence)	UV	visible to sensor
UVR (UVA reflected)	UV	UV to sensor
IRFC (IR reflected false		
color		

Creation and reference characterization of Edo period Japanese woodblock printing ink colorant samples using multimodal imaging and reflectance spectroscopy
taravilufara" 0 and Gwenanne Etowaidi"

Images taken under multi-coloured LEDs

UV LEDs

Channels	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15
Peak wavelength (nm)	Cool White	Warm White	403	425	447	474	503	523	540	598	640	660	672	706	366

- Camera (Canon EOS 5D Mark II) taken off the IR and UV blocks
- Multi-colored LEDs
- 356 Kremer's Pigments
- 3 filters (UV, VIS, IR)

356 Selected pigments

- Red colors
- Green colors
- Blue colors
- Yellow colors
- Organic pigments
- Earth colors
- Cadmium pigments
blaue farber m)
eue cocors $/$ II

- Iron oxide and translucent pigments
- Pigments of our product

Captured images

Image of Kremer's pigment under 15 LEDs through Vis (1), UV (2), IR (3) filters

Before adjusting white balance (Vis)

After adjusting white balance (Vis)

Vis																		
75%	50%	25%	Channels	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Lapis Lazuli, pure

Alizarinviolett

klares mittleres Violett

Alizarine Violet bright medium violet

03

FLOWCHART of PIGMENT

Flowchart of pigments

1. Purple : $\mathbf{1 7}$ colors
2. Blue : 38 colors
3. Green : 38 colours
4. Yellow : 80 colours
5. Orange : 37 colors
6. Red : 52 colors

$=356$ colors

Yellow

Yellow

Channels	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peak wavelength (nm)	Cool White	Warm White	403	425	447	474	503	523	540	598	640	660	672	706	366

Yellow

Chamets	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peak wavelenget (mm)	cool	Wam where	403	425	4 atr	474	503	538	\$40	564	640	eso	672	706	\$6

Yellow

Ch	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
color	Yellow or Brown	Yellow	Black	Black	dark green	Green	Brown	light Brown	Orange	Yellowish green	Grey	Grey	Black	Black	Blue

Test Sample

Yellow

Yellow

Yellow

Test sample Yellow ochre

Natural Sienna Monte Amiata (17050)
French Ochre JOLES (40030)

French Ochre JCLES (40040)
French Ochre SOFODOR (40070)
Iron Oxide Yellow 920, medium (40410)
Iron Oxide Yellow 415, greenish (48000)
Iron Oxide Yellow 940, dark (48020)

Raw Sienna brownish (48040)

17 purple pigments
 Purple They were visually classified into 10 groups

Channels	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peak wavelength (nm)	Cool														
White	Warm	White	403	425	447	474	503	523	540	598	640	660	672	706	366

38 blue pigments
They were visually classified into 20 groups
S

Blue

38 green pigments

Green They were visually classified into 16 groups.

37 orange pigments

They were visually classified into 21 groups.

Orange

> 百

52 red pigments
Red
They were visually classified into 25 groups.

White, Grey, Black and Brown

94 pigments

They were visually classified into 10 groups.

Chamels	1	2	3	4	5	6	T	8	,	10	11	12	13	14	15
Peak memetentth (sme)	cool Whos	warm wate	403	423	445	474	503	523	340	390	\$400	680	672	70	\$6

Database of Kremer's
Capturing images under 15 LEDs channels

Flowchart of pigments
Flowchart of 7 colors group
Apply SOM to pigments database

Results_SOM

partition 1

ans = code: [21040 21060 23650]
partition 2
ans = code: [23300233102334023370]
partition 3
ans = code: [2102021030 2366043500438704388043910
43915]
partition 4
ans = code: [432305510055140]
partition 5
ans = code: 56150
partition 6
ans = code: [24000 43111 55125]
partition 7
ans $=$ code: [4310143918 43920]
partition 8
ans = code: [10130 1070043125]
partition 9
ans = code: [10110 210102385043200 43210]
partition 10
ans = code: [10100 1012011283 40013]
partition 11
ans = code: []
partition 12
ans = code: [11572116421170504003040070]
partition 13
ans = code: [17000 400104004043130] partition 14
ans $=$ code: [11150 40800]
partition 15
ans = code: [17400 40012 40195]
partition 16
ans = code: [40214 402204026040301 40400]
partition 17
ans = code: []
partition 18
ans = code: [23330 52200]
partition 19
ans = code: [10930 41800]
partition 20
ans = code: [11000 40821]
partition 21
ans = code: 40080
partition 22
ans = code: [40410 4800048020480404805048060$]$
partition 23
ans = code: [40241402804031040392 40404]
partition 24
ans = code: [28020 4013040611]
partition 25
ans = code: [40610 40612 40630]

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Cool White	Warm White	403	425	447	474	503	523	540	598	640	660	672	706

21040 Cadmiun Yellow Lemon No6- medium 21060 Cadmiun Yellow Lemon No9- dark 23650 Brilliant Yellow
code: [21040 21060 23650]

partition1

Test sample • Yellow ochre

pigment : gum arabic
$1: 4$

SOM_result
partition 12
11572 Burgundy Yellow Ochre- fine
116421 Yellow Moroccan Ochre- fine
17050 Natural Sienna- Monte Amiata
40030 French Ochre JOLES
40070 French Ochre SOFODOR

Spectral Reflectance of a group of yellow classified visually.

partition12

SOM_result

Results of PCA

Sureeporn Khampaeng, Pichayada Katemake, Chawan Koopipat, "Optimizing multicoloured LEDs for identifying pigments," Proc. SPIE 11784, Optics for Arts, Architecture, and Archaeology VIII, 117841B (13 July 2021); doi: 10.1117/12.2593274

SPIE. Event: SPIE Optical Metrology, 2021, Online Only

Example of Kremer blue pigments categorized by 598 nm and 425 nm .

Sureeporn Khampaeng, Pichayada Katemake, Chawan Koopipat, "Optimizing multicoloured LEDs for identifying pigments," Proc. SPIE 11784, Optics for Arts, Architecture, and Archaeology VIII, 117841B (13 July 2021); doi: 10.1117/12.2593274

SPIE.
 Event: SPIE Optical Metrology, 2021, Online Only

SPIE. Event: SPIE Optical Metrology, 2021, Online Only

Red	Orange	Yellow	Green	White, grey, black and brown
$\begin{aligned} & \text { 403nm_L*-PC1 } \\ & {[-0.93]} \end{aligned}$	$\begin{aligned} & \text { 403nm_C*-PC1 } \\ & {[-0.84]} \end{aligned}$	$\begin{aligned} & \text { 503nm_L*-PC1 } \\ & {[-0.90]} \\ & 503 n m _h-P C 1 \\ & {[-0.80]} \\ & 503 n m _C^{*}-P C 2 \\ & {[-0.70]} \end{aligned}$	$\begin{aligned} & \text { 503nm_C*-PC2 } \\ & {[-0.72]} \end{aligned}$	403nm_L*-PC1 [-0.99]
$\begin{aligned} & 540 \mathrm{~nm} L^{*}-\mathrm{PC} 1 \\ & {[-0.78]} \\ & 540 \mathrm{~nm} _C^{*}-\mathrm{PC} 2 \\ & {[-0.63]} \end{aligned}$	$\begin{aligned} & 447 \mathrm{~nm} _L^{*}-\mathrm{PC} 1 \\ & {[-0.81]} \end{aligned}$	$\begin{aligned} & 540 n m _L^{*}-P C 1 \\ & {[-0.96]} \\ & 540 n m _C^{*}-P C 2 \\ & {[-0.89]} \end{aligned}$	$\begin{aligned} & \text { 598nm_L*-PC1 } \\ & {[-0.99]} \end{aligned}$	503_L*-PC1 [-0.99]
$\begin{aligned} & \text { 660nm_L*-PC3 } \\ & {[0.59]} \\ & 660 \mathrm{~nm} _ \text {h-PC4 } \\ & {[0.73]} \end{aligned}$	$\begin{aligned} & \text { 540nm_h-PC2 } \\ & {[0.86]} \\ & 540 \mathrm{~nm} _C-P C 3 \\ & {[-0.83]} \end{aligned}$	$\begin{aligned} & 598 n m _C^{*}-P C 1 \\ & {[-0.80]} \end{aligned}$	$\begin{aligned} & \text { 640nm_L*-PC1 } \\ & {[-0.98]} \end{aligned}$	540nm_h-PC2 [0.81]
$\begin{aligned} & 672 \mathrm{~nm} L^{*}-\mathrm{PC} 4 \\ & {[-0.72]} \end{aligned}$	$\begin{aligned} & 672 \mathrm{~nm} _\mathrm{C}^{*}-\mathrm{PC} 4 \\ & {[0.70]} \end{aligned}$			660_L*-PC1 [-0.96]

Conclusions

- Apart from the technical photography (TP) technique used for identification pigments, we proposed a use of narrow band multi-colored LEDs for capturing images and use them for classifying and identification of pigments.
- These two methods can be used for confirmation each other.
- The self organized map is useful for clustering and visualization this type of data. We also consider using VQTAM based on SOM to improve the results.
- PCA could be used for optimizing the LEDs channels. We also consider the feature selection for optimization to improve the results.

THANK

YOU

CCIW22

